Dopamine signaling through D1-like versus D2-like receptors in the nucleus accumbens core versus shell differentially modulates nicotine reward sensitivity.
نویسندگان
چکیده
Considerable evidence implicates the mesolimbic dopamine (DA) system in the processing of nicotine's reinforcing properties, specifically the ventral tegmental area (VTA) and the terminal fields of VTA DAergic projections to the "core" (NAcore) and "shell" (NAshell) subdivisions of the nucleus accumbens (NAc). However, the specific roles of DA D(1)-like and D(2)-like receptor subtypes in nicotine reward processing within these NAc subregions have not been elucidated. We report that microinfusions of DA D(1)-like or D(2)-like receptor-specific antagonists into NAcore or NAshell double dissociate the rewarding and aversive properties of systemic or intra-VTA nicotine, and differentially regulate sensitivity to the rewarding properties as well as the motivational valence of either intra-VTA or systemic nicotine administration. Using a place conditioning procedure, NAshell infusions of a D(2)-like receptor antagonist switched the motivational valence of intra-VTA nicotine from aversive to rewarding and potentiated nicotine reward sensitivity to sub-reward threshold intra-VTA nicotine doses. In contrast, NAcore infusions of a D(1)-like receptor antagonist switched intra-VTA nicotine aversion to reward, and potentiated reward sensitivity to sub-reward threshold nicotine doses. Thus, D(1)-like versus D(2)-like receptors in NAcore versus NAshell subdivisions play functionally dissociable roles in modulating systemic or intra-VTA nicotine motivational processing.
منابع مشابه
P141: Role of Dopamine in Anxiety Behavior
The mesolimbic dopamine (DA) system contains both D1-like and D2-like receptors, has been connected to control of locomotor behavior. An apparent role for D1 and D2 receptors throughout the mesolimbic system in the alteration of locomotor behavior has been demonstrated in pharmacological studies. The nucleus accumbens (NAc) is comprised of a core and a shell subregion, which is a component of t...
متن کامل∆FosB differentially modulates nucleus accumbens direct and indirect pathway function.
Synaptic modifications in nucleus accumbens (NAc) medium spiny neurons (MSNs) play a key role in adaptive and pathological reward-dependent learning, including maladaptive responses involved in drug addiction. NAc MSNs participate in two parallel circuits, direct and indirect pathways that subserve distinct behavioral functions. Modification of NAc MSN synapses may occur in part via changes in ...
متن کاملCell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.
The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of Tr...
متن کاملDevelopment of behavioral preferences for the optimal choice following unexpected reward omission is mediated by a reduction of D2-like receptor tone in the nucleus accumbens.
To survive in a dynamic environment, animals must identify changes in resource availability and rapidly apply adaptive strategies to obtain resources that promote survival. We have utilised a behavioral paradigm to assess differences in foraging strategy when resource (reward) availability unexpectedly changes. When reward magnitude was reduced by 50% (receive one reward pellet instead of two),...
متن کاملDopaminergic modulation of risky decision-making.
Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a "Risky Decision-making Task" that involves choices between small "safe" rewards and large "risky" rewards accompanied by adverse consequ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 32 شماره
صفحات -
تاریخ انتشار 2008